MOULE (in Rouge!) #RedInstead<p>((10^n)-1)*(2/3)-53, a formula resulting in rows of n number of sixes with the last two sixes replaced with the number 13, result in primes for n = 2, 3, 7, 12, 30, 97, 192, 265, 327, 417, 475, 574, 595, 699, 9563, and 9601. :MOULE_Happy:</p><p>My computer is still searching for more (currently it's at n = 12000) and I'll update this if it finds any more!</p><p><a href="https://mastodon.moule.world/tags/Math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Math</span></a> <a href="https://mastodon.moule.world/tags/Mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Mathematics</span></a> <a href="https://mastodon.moule.world/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mastodon.moule.world/tags/RecreationalMath" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>RecreationalMath</span></a> <a href="https://mastodon.moule.world/tags/RecMath" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>RecMath</span></a> <a href="https://mastodon.moule.world/tags/RecreationalMathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>RecreationalMathematics</span></a> <a href="https://mastodon.moule.world/tags/Primes" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Primes</span></a></p>